DM872 Math Optimization at Work

Lagrangian Relaxation

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

[Partly based on slides by David Pisinger, DIKU (now DTU)]

Outline

Relaxation

In branch and bound we find upper bounds by relaxing the problem

Relaxation

$$\max_{s \in P} g(s) \geq \left\{ \max_{s \in P} f(s) \atop \max_{s \in S} g(s) \right\} \geq \max_{s \in S} f(s)$$

- P: candidate solutions;
- $S \subseteq P$ feasible solutions;
- $g(x) \ge f(x)$

Which constraints should be relaxed?

- Quality of bound (tightness of relaxation)
- Remaining problem can be solved efficiently
- Proper multipliers can be found efficiently
- Constraints difficult to formulate mathematically
- Constraints which are too expensive to write up

Relevant Relaxations

Different relaxations

- LP-relaxation
- Deleting constraint
- Lagrange relaxation
- Surrogate relaxation
- Semidefinite relaxation

Relaxations are often used in combination.

Tighter Best surrogate relaxation **Best Lagrangian** relaxation

LP relaxation

Surrogate Relaxation

Integer Programming Problem: $\max\{cx \mid Ax \leq b, Dx \leq d, x \in \mathbb{Z}_+^n\}$ Relax complicating constraints $Dx \leq d$. Surrogate Relax $Dx \leq d$ using multipliers $\lambda \geq 0$, i.e., add together constraints using weights λ

```
egin{aligned} & z_{SR}(\lambda) = \max{cx} \ & 	ext{s.t.} \ Ax \leq b \ & \lambda Dx \leq \lambda d \ & x \in \mathbb{Z}^n_+ \end{aligned}
```

Proposition: Optimal Solution to relaxed problem gives an upper bound on original problem **Proof:** show that it is a relaxation

Each multiplier λ_i is a weighting of the corresponding constraint If λ_i large \implies constraint satisfied (at expenses of other constraints) If $\lambda_i = 0 \implies$ drop the constraint

Surrogate relaxation, example

Solution $(x_1, x_2) = (2, 3)$ with $z_{SR} = 4 \cdot 2 + 3 = 11$ Upper bound

Tightness of Relaxations (1/2)

Integer Linear Programming problem

 $z = \max cx$ s.t. $Ax \le b$ $Dx \le d$ $x \in \mathbb{Z}^{n}_{+}$ It corresponds to:

 $z = \max\left\{ cx \, : \, x \in \operatorname{conv}(Ax \leq b, Dx \leq d, x \in \mathbb{Z}_+^n)
ight\}$

LP-relaxation:

Lagrange Dual Problem

 $z_{LD} = \min_{\lambda > 0} z_{LR}(\lambda)$

$$ig| z_{LP} = \maxig\{ cx \, : \, x \in Ax \leq b, Dx \leq d, x \in \mathbb{R}^n_+ ig\}$$

Lagrangian Relaxation, $\lambda \geq 0$:

$$egin{aligned} & z_{LR}(\lambda) = \max{cx} - \lambda(Dx - d) \ & ext{s.t.} \ Ax \leq b \ & x \in \mathbb{Z}^n_+ \end{aligned}$$

with best multipliers λ it corresponds to:

 $z_{LD} = \max\left\{ cx \ : \ Dx \leq d, x \in \operatorname{conv}(Ax \leq b, x \in \mathbb{Z}^n_+)
ight\}$

(NB: role of $Ax \leq b$ and $Dx \leq d$ inverted wrt previous slide)

Fig 16.6 from [AMO]

Tightness of Relaxations (2/2)

Surrogate Relaxation, $\lambda \geq 0$

 $egin{aligned} & z_{SR}(\lambda) = \max cx \ & ext{s.t.} \ Ax \leq b \ & \lambda Dx \leq \lambda d \ & ext{x} \in \mathbb{Z}^n_+ \end{aligned}$

Surrogate Dual Problem

 $z_{SD} = \min_{\lambda \ge 0} z_{SR}(\lambda)$

with best multipliers λ :

 $z_{SD} = \max\left\{cx : x \in \operatorname{conv}(Ax \le b, \lambda Dx \le \lambda d, x \in \mathbb{Z}_+^n)\right\}$

 \sim Best surrogate relaxation (i.e., best λ multipliers) is tighter than best Lagrangian relaxation.

Relaxation strategies

Which constraints should be relaxed

- "the complicating ones"
- remaining problem is polynomially solvable (e.g. min spanning tree, assignment problem, linear programming)
- remaining problem is totally unimodular (e.g. network problems)
- remaining problem is NP-hard but good techniques exist (e.g. knapsack)
- constraints which cannot be expressed in MIP terms (e.g. cutting)
- constraints which are too extensive to express (e.g. subtour elimination in TSP)

Subgradient optimization Lagrange multipliers

 $z = \max cx$ s.t. $Ax \le b$ $Dx \le d$ $x \in \mathbb{Z}^n_+$

Lagrange Relaxation, multipliers $\lambda \geq 0$

$$egin{aligned} & z_{LR}(\lambda) = \max \ cx - \lambda(Dx - d) \ & ext{s.t.} \ Ax \leq b \ & x \in \mathbb{Z}^n_+ \end{aligned}$$

Lagrange Dual Problem

 $z_{LD} = \min_{\lambda \ge 0} z_{LR}(\lambda)$

- We do not need best multipliers in B&B algorithm
- Subgradient optimization fast method
- Works well due to convexity
- Roots in nonlinear programming, Held and Karp (1971)

Subgradient optimization, motivation

Lagrange function $z_{LR}(\lambda)$ is piecewise linear and convex

Netwon-like method to minimize a function in one variable

Digression: Gradient methods

Gradient methods are iterative approaches:

- find a descent direction with respect to the objective function f
- move x in that direction by a step size

The descent direction can be computed by various methods, such as gradient descent, Newton-Raphson method and others. The step size can be computed either exactly or loosely by solving a line search problem.

Example: gradient descent

Set iteration counter t = 0, and make an initial guess x_0 for the minimum Repeat:

Compute a descent direction $\Delta_t = \nabla(f(x_t))$ Choose α_t to minimize $f(x_t - \alpha \Delta_t)$ over $\alpha \in \mathbb{R}_+$ Update $x_{t+1} = x_t - \alpha_t \Delta_t$, and t = t + 1Until $\|\nabla f(x_k)\| < tolerance$

Step 4 can be solved 'loosely' by taking a fixed small enough value $\alpha>0$

Newton-Raphson method

[from Wikipedia]

Find zeros of a real-valued derivable function

x:f(x)=0.

- Start with a guess x_0
- Repeat:

Move to a better approximation

 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

until a sufficiently accurate value is reached.

Geometrically, $(x_n, 0)$ is the intersection with the x-axis of a line tangent to f at $(x_n, f(x_n))$.

$$f'(x_n) = \frac{\Delta y}{\Delta x} = \frac{f(x_n) - 0}{x_n - x_{n+1}}.$$

Subgradient

Generalization of gradients to non-differentiable functions.

Definition

```
An m-vector \gamma is subgradient of f(\lambda) at \overline{\lambda} if
```

 $f(\lambda) \ge f(\bar{\lambda}) + \gamma(\lambda - \bar{\lambda})$

The inequality says that the hyperplane

 $y = f(\bar{\lambda}) + \gamma(\lambda - \bar{\lambda})$

is tangent to $y = f(\lambda)$ at $\lambda = \overline{\lambda}$ and supports $f(\lambda)$ from below

Proposition Given a choice of nonnegative multipliers $\bar{\lambda}$. If x' is an optimal solution to $z_{LR}(\bar{\lambda})$ then

 $\gamma = d - Dx'$

is a subgradient of $z_{LR}(\lambda)$ at $\lambda = \overline{\lambda}$.

Proof We wish to prove that from the subgradient definition:

$$\max_{Ax\leq b}\left(cx-\lambda(Dx-d)
ight)\geq \max_{Ax\leq b}\left(cx-ar{\lambda}(Dx-d)
ight)+\gamma(\lambda-ar{\lambda})$$

Using:

- an opt. solution to $f(\overline{\lambda}) = \max_{Ax \leq b} (cx \overline{\lambda}(Dx d))$ is x'
- the definition of γ

$$egin{aligned} \max_{Ax\leq b}{(cx-\lambda(Dx-d))} \geq {(cx'-ar\lambda(Dx'-d))} + {(d-Dx')}{(\lambda-ar\lambda)} \ &= {cx'-\lambda(Dx'-d)} \end{aligned}$$

Intuition

Lagrange dual:

$$\begin{split} \min z_{LR}(\lambda) &= cx - \lambda(Dx - d) \\ \text{s.t.} \ Ax &\leq b \\ &x \in \mathbb{Z}^n_+ \end{split}$$

Gradient in x' is

$$\gamma = d - Dx'$$

Subgradient Iteration

Recursion

$$\lambda^{k+1} = \max\left\{\lambda^k - \theta\gamma^k, \mathbf{0}
ight\}$$

where $\theta > 0$ is step-size

If $\gamma > 0$ and θ is sufficiently small $z_{LR}(\lambda)$ will decrease.

- Small θ slow convergence
- Large θ unstable

Held and Karp procedure (gradient descent)

Initially

 $\lambda^{(0)} = [0, \ldots, 0]$

compute the new multipliers by recursion

$$\lambda_i^{(k+1)} := egin{cases} \lambda_i^{(k)} & ext{if } |\gamma_i| \leq \epsilon \ \max(\lambda_i^{(k)} - heta \gamma_i, 0) & ext{if } |\gamma_i| > \epsilon \end{cases}$$

where γ is subgradient. The step θ is defined by

$$\theta = \mu \frac{z_{LR}(\lambda^k) - \underline{z}}{\sum_i \gamma_i^2}$$

where μ is an appropriate constant and \underline{z} a heuristic lower bound for the orginal ILP problem. E.g. $\mu = 1$ and halved if upper bound not decreased in 20 iterations.

Lagrange relaxation and LP

For an LP-problem where we Lagrange relax all constraints

- Dual variables are best choice of Lagrange multipliers
- Lagrange relaxation and LP "relaxation" give same bound

Gives a clue to solve LP-problems without Simplex

- Iterative algorithms
- Polynomial algorithms