DM872

Math Optimization at Work

Lagrangian Relaxation

Marco Chiarandini

Department of Mathematics \& Computer Science University of Southern Denmark
[Partly based on slides by David Pisinger, DIKU (now DTU)]

Outline

Relaxation

In branch and bound we find upper bounds by relaxing the problem
Relaxation

$$
\max _{s \in P} g(s) \geq\left\{\begin{array}{c}
\max _{s \in P} f(s) \\
\max _{s \in S} g(s)
\end{array}\right\} \geq \max _{s \in S} f(s)
$$

- P : candidate solutions;
- $S \subseteq P$ feasible solutions;
- $g(x) \geq f(x)$

Which constraints should be relaxed?

- Quality of bound (tightness of relaxation)
- Remaining problem can be solved efficiently
- Proper multipliers can be found efficiently
- Constraints difficult to formulate mathematically
- Constraints which are too expensive to write up

Relevant Relaxations

Different relaxations
Tighter

- LP-relaxation
- Deleting constraint
- Lagrange relaxation
- Surrogate relaxation
- Semidefinite relaxation

Relaxations are often used in combination.

Best surrogate relaxation

Best Lagrangian relaxation

LP relaxation

Surrogate Relaxation

Integer Programming Problem: $\max \left\{c x \mid A x \leq b, D x \leq d, x \in \mathbb{Z}_{+}^{n}\right\}$
Relax complicating constraints $D x \leq d$.
Surrogate Relax $D x \leq d$ using multipliers $\lambda \geq 0$, i.e., add together constraints using weights λ

$$
\left.\begin{array}{rl}
z_{S R}(\lambda)= & \max
\end{array}\right) \quad \begin{aligned}
\text { s.t. } & A x \leq b \\
& \lambda D x \leq \lambda d \\
& x \in \mathbb{Z}_{+}^{n}
\end{aligned}
$$

Proposition: Optimal Solution to relaxed problem gives an upper bound on original problem Proof: show that it is a relaxation

Each multiplier λ_{i} is a weighting of the corresponding constraint If λ_{i} large \Longrightarrow constraint satisfied (at expenses of other constraints)
If $\lambda_{i}=0 \Longrightarrow$ drop the constraint

Surrogate relaxation, example

$$
\begin{array}{ll}
\operatorname{maximize} & 4 x_{1}+x_{2} \\
\text { subject to } & 3 x_{1}-x_{2} \leq 6 \\
& \\
& 5 x_{1}+2 x_{2} \leq 3 \\
& x_{1}, \quad x_{2} \geq 0, \text { it }
\end{array}
$$

IP solution $\left(x_{1}, x_{2}\right)=(2,3)$ with $z_{I P}=11$
LP solution $\left(x_{1}, x_{2}\right)=\left(\frac{30}{11}, \frac{24}{11}\right)$ with $z_{L P}=\frac{144}{11}=13.1$
First and third constraint complicating, surrogate relax using multipliers $\lambda_{1}=2$, and $\lambda_{3}=1$

Solution $\left(x_{1}, x_{2}\right)=(2,3)$ with $z_{S R}=4 \cdot 2+3=11$
Upper bound

Tightness of Relaxations (1/2)

Integer Linear Programming problem

$$
\begin{aligned}
z=\max & c x \\
\text { s.t. } & A x \leq b \\
& D x \leq d \\
& x \in \mathbb{Z}_{+}^{n}
\end{aligned}
$$

It corresponds to:

$$
z=\max \left\{c x: x \in \operatorname{conv}\left(A x \leq b, D x \leq d, x \in \mathbb{Z}_{+}^{n}\right)\right\}
$$

LP-relaxation:

$$
z_{L P}=\max \left\{c x: x \in A x \leq b, D x \leq d, x \in \mathbb{R}_{+}^{n}\right\}
$$

Lagrange Dual Problem

$$
z_{L D}=\min _{\lambda \geq 0} z_{L R}(\lambda)
$$

$$
\begin{gathered}
z_{L R}(\lambda)=\max c x-\lambda(D x-d) \\
\text { s.t. } A x \leq b \\
x \in \mathbb{Z}_{+}^{n}
\end{gathered}
$$

with best multipliers λ it corresponds to:

$$
z_{L D}=\max \left\{c x: D x \leq d, x \in \operatorname{conv}\left(A x \leq b, x \in \mathbb{Z}_{+}^{n}\right)\right\}
$$

(a)

(c)

(b)

(d)
(NB: role of $A x \leq b$ and $D x \leq d$ inverted wrt previous slide)

Fig 16.6 from [AMO]

Tightness of Relaxations (2/2)

Surrogate Relaxation, $\lambda \geq 0$

$$
\begin{aligned}
z_{S R}(\lambda)=\max & c x \\
\text { s.t. } & A x \leq b \\
& \lambda D x \leq \lambda d \\
& x \in \mathbb{Z}_{+}^{n}
\end{aligned}
$$

Surrogate Dual Problem

$$
z_{S D}=\min _{\lambda \geq 0} z_{S R}(\lambda)
$$

with best multipliers λ :

$$
z_{S D}=\max \left\{c x: x \in \operatorname{conv}\left(A x \leq b, \lambda D x \leq \lambda d, x \in \mathbb{Z}_{+}^{n}\right)\right\}
$$

\rightsquigarrow Best surrogate relaxation (i.e., best λ multipliers) is tighter than best Lagrangian relaxation.

Relaxation strategies

Which constraints should be relaxed

- "the complicating ones"
- remaining problem is polynomially solvable
(e.g. min spanning tree, assignment problem, linear programming)
- remaining problem is totally unimodular (e.g. network problems)
- remaining problem is NP-hard but good techniques exist (e.g. knapsack)
- constraints which cannot be expressed in MIP terms (e.g. cutting)
- constraints which are too extensive to express (e.g. subtour elimination in TSP)

Subgradient optimization Lagrange multipliers

$$
\begin{aligned}
z=\max & c x \\
\text { s.t. } & A x \leq b \\
& D x \leq d \\
& x \in \mathbb{Z}_{+}^{n}
\end{aligned}
$$

- We do not need best multipliers in $\mathrm{B} \& \mathrm{~B}$ algorithm
- Subgradient optimization fast method
- Works well due to convexity
- Roots in nonlinear programming, Held and Karp (1971)

Lagrange Dual Problem

$$
z_{L D}=\min _{\lambda \geq 0} z_{L R}(\lambda)
$$

Subgradient optimization, motivation

Lagrange function $z_{L R}(\lambda)$ is piecewise linear and convex

Netwon-like method to minimize a function in one variable

Digression: Gradient methods

Gradient methods are iterative approaches:

- find a descent direction with respect to the objective function f
- move x in that direction by a step size

The descent direction can be computed by various methods, such as gradient descent, Newton-Raphson method and others. The step size can be computed either exactly or loosely by solving a line search problem.

Example: gradient descent
Set iteration counter $t=0$, and make an initial guess x_{0} for the minimum
Repeat:
Compute a descent direction $\Delta_{t}=\nabla\left(f\left(x_{t}\right)\right)$
Choose α_{t} to minimize $f\left(x_{t}-\alpha \Delta_{t}\right)$ over $\alpha \in \mathbb{R}_{+}$
Update $x_{t+1}=x_{t}-\alpha_{t} \Delta_{t}$, and $t=t+1$
Until $\left\|\nabla f\left(x_{k}\right)\right\|<$ tolerance
Step 4 can be solved 'loosely' by taking a fixed small enough value $\alpha>0$

Newton-Raphson method

[from Wikipedia]
Find zeros of a real-valued derivable function
$x: f(x)=0$.

- Start with a guess x_{0}
- Repeat:

Move to a better approximation

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

until a sufficiently accurate value is reached.
Geometrically, $\left(x_{n}, 0\right)$ is the intersection with the x-axis of a line tangent to f at $\left(x_{n}, f\left(x_{n}\right)\right)$.

$$
f^{\prime}\left(x_{n}\right)=\frac{\Delta y}{\Delta x}=\frac{f\left(x_{n}\right)-0}{x_{n}-x_{n+1}} .
$$

Subgradient

Generalization of gradients to non-differentiable functions.
Definition
An m-vector γ is subgradient of $f(\lambda)$ at $\bar{\lambda}$ if

$$
f(\lambda) \geq f(\bar{\lambda})+\gamma(\lambda-\bar{\lambda})
$$

The inequality says that the hyperplane

$$
y=f(\bar{\lambda})+\gamma(\lambda-\bar{\lambda})
$$

is tangent to $y=f(\lambda)$ at $\lambda=\bar{\lambda}$ and supports $f(\lambda)$ from below

Proposition Given a choice of nonnegative multipliers $\bar{\lambda}$. If x^{\prime} is an optimal solution to $z_{L R}(\bar{\lambda})$ then

$$
\gamma=d-D x^{\prime}
$$

is a subgradient of $z_{L R}(\lambda)$ at $\lambda=\bar{\lambda}$.
Proof We wish to prove that from the subgradient definition:

$$
\max _{A x \leq b}(c x-\lambda(D x-d)) \geq \max _{A x \leq b}(c x-\bar{\lambda}(D x-d))+\gamma(\lambda-\bar{\lambda})
$$

Using:

- an opt. solution to $f(\bar{\lambda})=\max _{A x \leq b}(c x-\bar{\lambda}(D x-d))$ is x^{\prime}
- the definition of γ

$$
\begin{aligned}
\max _{A x \leq b}(c x-\lambda(D x-d)) & \geq\left(c x^{\prime}-\bar{\lambda}\left(D x^{\prime}-d\right)\right)+\left(d-D x^{\prime}\right)(\lambda-\bar{\lambda}) \\
& =c x^{\prime}-\lambda\left(D x^{\prime}-d\right)
\end{aligned}
$$

Intuition

Lagrange dual:

$$
\begin{array}{ll}
\min & z_{L R}(\lambda)=c x-\lambda(D x-d) \\
\text { s.t. } & A x \leq b \\
\quad x \in \mathbb{Z}_{+}^{n}
\end{array}
$$

Gradient in x^{\prime} is

$$
\gamma=d-D x^{\prime}
$$

Subgradient Iteration

Recursion

$$
\lambda^{k+1}=\max \left\{\lambda^{k}-\theta \gamma^{k}, 0\right\}
$$

where $\theta>0$ is step-size
If $\gamma>0$ and θ is sufficiently small $z_{L R}(\lambda)$ will decrease.

- Small θ slow convergence
- Large θ unstable

Held and Karp procedure (gradient descent)

Initially

$$
\lambda^{(0)}=[0, \ldots, 0]
$$

compute the new multipliers by recursion

$$
\lambda_{i}^{(k+1)}:= \begin{cases}\lambda_{i}^{(k)} & \text { if }\left|\gamma_{i}\right| \leq \epsilon \\ \max \left(\lambda_{i}^{(k)}-\theta \gamma_{i}, 0\right) & \text { if }\left|\gamma_{i}\right|>\epsilon\end{cases}
$$

where γ is subgradient.
The step θ is defined by

$$
\theta=\mu \frac{z_{L R}\left(\lambda^{k}\right)-\underline{z}}{\sum_{i} \gamma_{i}^{2}}
$$

where μ is an appropriate constant and \underline{z} a heuristic lower bound for the orginal ILP problem. E.g. $\mu=1$ and halved if upper bound not decreased in 20 iterations.

Lagrange relaxation and LP

For an LP-problem where we Lagrange relax all constraints

- Dual variables are best choice of Lagrange multipliers
- Lagrange relaxation and LP "relaxation" give same bound

Gives a clue to solve LP-problems without Simplex

- Iterative algorithms
- Polynomial algorithms

