DM872
Math Optimization at Work

Lagrangian Relaxation

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Partly based on slides by David Pisinger, DIKU (now DTU)|

Outline

Relaxation

In branch and bound we find upper bounds by relaxing the problem

Relaxation

maxsep (s)
> seP >
r;wea,g(g(s) - {maxses g(s)} =TS fs)

® P: candidate solutions;
® S C P feasible solutions;

* g(x) = f(x)

Which constraints should be relaxed?
® Quality of bound (tightness of relaxation)
® Remaining problem can be solved efficiently
® Proper multipliers can be found efficiently
® Constraints difficult to formulate mathematically

® Constraints which are too expensive to write up

Relevant Relaxations

Different relaxations

® | P-relaxation
® Deleting constraint
® [agrange relaxation

® Surrogate relaxation

Semidefinite relaxation

Relaxations are often used in combination.

Tighter

Best surrogate
relaxation

Best Lagrangian
relaxation

LP relaxation

Surrogate Relaxation

Integer Programming Problem: max{cx | Ax < b, Dx < d,x € 7}
Relax complicating constraints Dx < d.
Surrogate Relax Dx < d using multipliers A\ > 0, i.e., add together constraints using weights \

zsr(A) = max cx
st. Ax<bh
ADx < \d
x el

Proposition: Optimal Solution to relaxed problem gives an upper bound on original problem
Proof: show that it is a relaxation

Each multiplier A; is a weighting of the corresponding constraint
If \; large = constraint satisfied (at expenses of other constraints)
If \; =0 = drop the constraint

Surrogate relaxation, example

maximize 4x; + x

subjectto 3x; — x < 6
x < 3
5x1 + 2x < 18
X1, xp > 0, integer

+ { + +

,3) with z;p =11
oluti 30 24y (s 144

LP solution (x1,x2) = (37, 17) With zzp = 57 = 13.1

First and third constraint complicating, surrogate relax us-
ing multipliers A; = 2, and A; =

—_

maximize 4x; + x

subject to x < 3
11x; < 30
X1, xp > 0, integer

Solution (x1,x2) = (2,3) with zgg =4-2+3 =11
Upper bound

Tightness of Relaxations (1/2)

Integer Linear Programming problem It corresponds to:
Zz = max cx z=max{cx : x € conv(Ax < b,Dx < d,x €)}
st. Ax<b
Dx <d
= LP-relaxation:
x el
Zip = max{cx cx€Ax< b,Dx<d,xe Ri}
Lagrangian Relaxation, A > 0: Lagrange Dual Problem
ZLR()\) = MmaX cx — /\(DX — d) ZIp — &n>|g ZLR(/\)
st. Ax < b B
x ez

with best multipliers \ it corresponds to:

zip = max{cx : Dx < d,x € conv(Ax < b,x € Z1)}

Theset [x: sx<b, Dx<q,x20|

The set {x: xS b, Dx < g, x 20 and integer)

Hi—m dArsh 5@:9

(b)
The set [x: Ax < b, x e H(X))

A
4 . . .

(NB: role of Ax < b
and Dx < d inverted
wrt previous slide)

Fig 16.6 from [AMO]

Tightness of Relaxations (2/2)

Surrogate Relaxation, A > 0 Surrogate Dual Problem
zsr(A\) = max cx Zsp = r)\nzlra zsr()
st. Ax<bh
ADx < \d
x el

with best multipliers \:

‘ZSD = max{cx : x € conv(Ax < b,ADx < \d,x € Zi)} ‘

~~ Best surrogate relaxation (i.e., best A\ multipliers) is tighter than best Lagrangian relaxation.

Relaxation strategies

Which constraints should be relaxed
® 'the complicating ones"

® remaining problem is polynomially solvable
(e.g. min spanning tree, assignment problem, linear programming)

® remaining problem is totally unimodular
(e.g. network problems)

® remaining problem is NP-hard but good techniques exist
(e.g. knapsack)

® constraints which cannot be expressed in MIP terms
(e.g. cutting)

® constraints which are too extensive to express
(e.g. subtour elimination in TSP)

10

Subgradient optimization Lagrange multipliers

Z — maX X

s.t. Ax < b
Dx < d
x €7l
® We do not need best multipliers in B&B
Lagrange Relaxation, multipliers A > 0 algorithm

2r(A) = max ex — A(Dx — d) Subgradient optimization fast method

s.t. Ax<b

x ez ® Roots in nonlinear programming, Held and
Karp (1971)

Works well due to convexity

Lagrange Dual Problem

ZIp = min ZLR()\)
A>0

11

Subgradient optimization, motivation

A

cxy —A(Dxy —d)
cxy —A(Dxy —d)

k()

cxs =A(Dxs =d)

cxy —A(Dx; —d)

cxy —A(Dx3 —d)

cxg —A(Dxg —d) A >

X /Xn+1 Xn

Lagrange function z, () is piecewise linear and Netwon-like method to minimize a function in
convex one variable

Digression: Gradient methods
Gradient methods are iterative approaches:

® find a descent direction with respect to the objective function f
® move x in that direction by a step size

The descent direction can be computed by various methods, such as gradient descent,
Newton-Raphson method and others. The step size can be computed either exactly or loosely by
solving a line search problem.

Example: gradient descent

Set iteration counter t = 0, and make an initial guess xo for the minimum
Repeat:

Compute a descent direction A, = V(f(x¢))

Choose a; to minimize f(x; — a/\;) over a € R

Update x;11 = x; — A, and t =t 41
Until ||V f(xk)|| < tolerance

Step 4 can be solved 'loosely’ by taking a fixed small enough value o > 0

13

Newton-Raphson method

[from Wikipedia]
Find zeros of a real-valued derivable function

x:f(x)=0.

® Start with a guess xg

® Repeat:
Move to a better approximation

f(xa)
Xn+1 = Xn — f/(Xn)

until a sufficiently accurate value is reached.
Geometrically, (x,,0) is the intersection with the x-axis of a line tangent to f at (x,., f(x,)).

Ay f(x,)—0

fl(xy) = -2 = .
(xn) AX Xy — Xp1

14

Subgradient
Generalization of gradients to non-differentiable functions.

Definition

An m-vector 7 is subgradient of f()\) at \ if

f(A) > FN) +~v(A=X)

The inequality says that the hyperplane

y=FfA)+v(A =)

is tangent to y = f()\) at A = \ and supports
f(\) from below

) +1(A~%)

x

15

Proposition Given a choice of nonnegative multipliers \. If x’ is an optimal solution to z; z()\) then

v=d— Dx

is a subgradient of z;g(\) at A = A.

Proof We wish to prove that from the subgradient definition:
_ _ > I\ _ A\ — \
I\r;a;z(cx ANDx — d)) > max (ex = A(Dx — d)) +v(A = A)
Using: B B
® an opt. solution to f(\) = maxax<p (cx — A(Dx — d)) is x’
® the definition of ~

m%i(cx —ANDx —d)) > (ex' = N(Dx' — d)) + (d — DX')(\ =)

=cox' — \(Dx' —d)

16

Intuition
Lagrange dual:
min z;g(A) = cx — A(Dx — d)
st. Ax < b
x €Ll

Gradient in X' is
v=d— Dx

Subgradient Iteration
Recursion

AHL = max {)\k — 97",0}
where 6 > 0 is step-size

If v > 0 and @ is sufficiently small z;g(\) will decrease.
® Small 6 slow convergence

® |arge # unstable

17

Held and Karp procedure (gradient descent)

Initially

compute the new multipliers by recursion
sy [if || < e
' T max(AY = 6;,0) if |yi > €

where ~ is subgradient.
The step 0 is defined by

z1r(A\) — 2

>iF
where 11 is an appropriate constant and z a heuristic lower bound for the orginal ILP problem.
E.g. 1o =1 and halved if upper bound not decreased in 20 iterations.

0=npn

Lagrange relaxation and LP
For an LP-problem where we Lagrange relax all constraints

® Dual variables are best choice of Lagrange multipliers

® Lagrange relaxation and LP "relaxation" give same bound

Gives a clue to solve LP-problems without Simplex

® |terative algorithms

® Polynomial algorithms

19

