DM872
 Math Optimization at Work

More on Modeling

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Modeling with IP, BIP, MIP

Outline

1. Modeling with IP, BIP, MIP

Modeling with IP, BIP, MIP

Iterate:

1. define parameters
2. define variables
3. use variables to express objective function
4. use variables to express constraints
a. problems with discrete input/output (knapsack, factory planning)
b. problems with logical conditions
c. combinatorial problems (sequencing, allocation, transport, assignment, partitioning)
d. network problems

Variables

discrete quantities
$\in \mathbb{Z}^{n}$
decision variables
indicator/auxiliary variables (for logical conditions)
$\in \mathbb{B}^{n}$
special ordered sets
$\in \mathbb{B}^{n}$
incidence vector of S
$\in \mathbb{B}^{n}$
$\in \mathbb{B}^{n}$

Assignment

$$
\max _{\sigma}\left\{\sum_{i} c_{i, \sigma(i)} \mid \sigma: I \rightarrow J\right\}
$$

TSP

$$
\min _{\pi}\left\{\sum_{i} c_{i, \pi(i)} \mid \pi:\{1 . . n\} \rightarrow\{1 . . n\} \text { and } \pi \text { is a circuit }\right\}
$$

COP

$$
\min _{S \subseteq N}\left\{\sum_{j \in S} c_{j} \mid S \in \mathcal{F}\right\}
$$

Logical Conditions

x binary
y integer
z continuous

Linking constraints $\quad z \in \mathbb{R}, x \in \mathbb{B}$

$$
\begin{aligned}
& \text { if } z=0 \text { then } x=0 \text {, if } z>0 \text { then } x=1 \quad \rightsquigarrow z-M x \leq 0 \\
& x=1 \Longrightarrow z \geq m
\end{aligned} \quad \rightsquigarrow z-m x \geq 0
$$

Logical conditions and $0-1$ variables

$$
\begin{aligned}
X_{1} \vee X_{2} & \Longleftrightarrow x_{1}+x_{2} \geq 1 \\
X_{1} \wedge X_{2} & \Longleftrightarrow x_{1}=1, x_{2}=1 \\
\neg X_{1} & \Longleftrightarrow x_{1}=0 \text { or }\left(1-x_{1}=1\right) \\
X_{1} \rightarrow X_{2} & \Longleftrightarrow x_{1}-x_{2} \leq 0 \\
X_{1} \leftrightarrow X_{2} & \Longleftrightarrow x_{1}-x_{2}=0
\end{aligned}
$$

Examples

- $\left(X_{A} \vee X_{B}\right) \rightarrow\left(X_{C} \vee X_{D} \vee X_{E}\right)$

$$
\begin{array}{ll}
x_{A}+x_{B} \geq 1 & x_{C}+x_{D}+x_{E} \geq 1 \\
x_{A}+x_{B} \geq 1 \Longrightarrow x=1 & x=1 \Longrightarrow x_{C}+x_{D}+x_{E} \geq 1 \\
x_{A}+x_{B}-2 x \leq 0 & x_{C}+x_{D}+x_{E} \geq x
\end{array}
$$

- Disjunctive constraints (encountered earlier)
- Constraint: $x_{1} x_{2}=0$

1) replace $x_{1} x_{2}$ by x_{3}
2) $x_{3}=1 \Longleftrightarrow x_{1}=1, x_{2}=1$

$$
\begin{aligned}
-x_{1}+x_{3} & \leq 0 \\
-x_{2}+x_{3} & \leq 0 \\
x_{1}+x_{2}-x_{3} & \leq 1
\end{aligned}
$$

- $z \cdot x, \quad z \in \mathbb{R}, x \in \mathbb{B}$

1) replace $z x$ by z_{1}
2) impose:

$$
\begin{aligned}
& x=0 \Longleftrightarrow z_{1}=0 \\
& x=1 \Longleftrightarrow z_{1}=z \\
& z_{1}-M x \quad \leq 0 \\
& -z+z_{1} \quad \leq 0 \\
& z-z_{1}+M x \leq M
\end{aligned}
$$

- Special ordered sets of type $1 / 2$ (for continuous or integer vars):

SOS1: set of vars within which exactly one must be non-zero SOS2: set of vars within which at most two can be non-zero. The two variables must be adjacent in the ordering

- separable programming and piecewise linear functions (next 5 slides)

Separable Programming

- Separable functions: sum of functions of single variables:

$$
\begin{aligned}
& x_{1}^{2}+2 x_{2}+e^{x^{3}} \quad \text { YES } \\
& x_{1} x_{2}+\frac{x_{2}}{x_{1}+1}+x_{3} \quad N O
\end{aligned}
$$

(actually, some non-separable can also be made separable:

1. $x_{1} x_{2}$ by y
2. relate y to x_{1} and x_{2} by:

$$
\log y=\log x_{1}+\log x_{2}
$$

needs care if x_{1} and x_{2} close to zero.)

- non-linear separable functions can be approximated by piecewise linear functions (valid for both constraints and objective functions)

Convex Non-linear Functions

- We can model convex non-linear functions by piece-wise linear functions and LP

$$
\begin{aligned}
\min & x_{1}^{2}-4 x_{1}-2 x_{2} \\
x_{1}+x_{2} & \leq 4 \\
2 x_{1}+x_{2} & \leq 5 \\
-x_{1}+4 x_{2} & \geq 2 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- LP Formulation

$$
\begin{aligned}
& x=\lambda_{0} a_{0}+\lambda_{1} a_{1}+\lambda_{2} a_{2}+\lambda_{3} a_{3} \\
& y=\lambda_{0} f\left(a_{0}\right)+\lambda_{1} f\left(a_{1}\right)+\lambda_{2} f\left(a_{2}\right)+\lambda_{3} f\left(a_{3}\right) \\
& \sum_{i=0}^{3} \lambda_{i}=1 \\
& \lambda_{i} \geq 0 \quad i=0, \ldots, 3 \\
& \text { at most two adjacent } \lambda_{i} \text { can be non zero }
\end{aligned}
$$

- To model $\left({ }^{*}\right)$ which are SOS2 we would need binary indicator variables and hence BIP as in next slide.
- However since the problem is convex, an optimal solution lies on the borders of the functions and hence we can skip introducing the binary variables and relax (*)

Non-convex Functions

Piece-wise Linear Functions

- non-convex functions require indicator variables and IP formulation

$$
g(x)=\sum_{j} g_{j}(x) \quad g_{j} \text { non linear }
$$

- approximated by $f(x)$ piecewise linear in the disjoint intervals $\left[a_{i}, b_{i}\right]$
- convex hull formulation (convex combination of points)

$$
\bigcup_{i \in I}\left(\begin{array}{l}
x=\quad \lambda_{i} a_{i}+\mu_{i} b_{i} \\
y=\quad \lambda_{i} f\left(a_{i}\right)+\mu_{i} f\left(b_{i}\right) \\
\lambda_{i}+\mu_{i}=1 \quad \lambda_{i}, \mu_{i} \geq 0
\end{array}\right)
$$

Remember how we modeled disjunctive polyhedra...

- using indicator variables $\delta \mathbf{s}$ we obtain the BIP formulation:

$$
\begin{aligned}
& x=\sum_{i \in I}\left(\lambda_{i} a_{i}+\mu_{i} b_{i}\right) \\
& y=\sum_{i \in I}\left(\lambda_{i} f\left(a_{i}\right)+\mu_{i} f\left(b_{i}\right)\right) \\
& \lambda_{i}+\mu_{i}=\delta_{i} \quad \forall i \in I \\
& \sum_{i \in I} \delta_{i}=1 \\
& \lambda_{i}, \mu_{i} \geq 0 \quad \forall i \in I \\
& \delta_{i} \in\{0,1\} \quad \forall i \in I
\end{aligned}
$$

the $\delta \mathrm{s}$ are SOS 1 .

Good/Bad Models

- Number of variables: sometimes it may be advantageous increasing if they are used in search tree.
$0-1$ var have specialized algorithms for preprocessing and for branch and bound. Hence a large number solved efficiently. Good using. Binary expansion:

$$
\begin{array}{rr}
0 \leq y \leq u & \\
y=x_{0}+2 x_{1}+4 x_{2}+8 x_{3}+\ldots+2^{r} x_{r} & r=\log _{2} u
\end{array}
$$

- Making explicit good variables for branching:

$$
\begin{aligned}
\sum_{j} a_{j} x_{j} & \leq b \\
\sum_{j} a_{j} x_{j}+u & =b
\end{aligned}
$$

u may be a good variable to branch (u is relaxed in LP but must be integer as well)

- Symmetry breaking:

Eg machine maintenance (in FPMM) $y_{j} \in \mathbb{Z}$ vs $x_{j} \in \mathbb{B}$

- Difficulty of LP models depends on number of constraints:

$$
\begin{aligned}
& \min \sum_{t}\left|a_{t} z_{t}-b_{t}\right| \quad \max \sum_{t} \\
& z_{t}^{\prime} \geq a_{t} z_{t}-b_{1} \\
& z_{t}^{\prime} \geq b_{t}-a_{t} z_{t}
\end{aligned}
$$

$$
\begin{aligned}
\max & \sum_{t} z_{t}^{+}-z_{t}^{-} \\
& z_{t}^{+}-z_{t}^{-}
\end{aligned}=a_{t} z_{t}-b_{t} . l y
$$

more variables but less constraints

- With IP it might be instead better increasing the number of constraints.
- Make big M as small as possible in IP (reduces feasible region possibly fitting it to convex hull).

Practical Tips

- Units of measure: check them!
all data should be scaled to stay in $0.1-10$ some software does this automatically
- Write few lines of text describing what the equations express and which are the variables, give examples on the problem modeled.
- Try the model on small simple example that can be checked by hand.
- Be diffident of infeasibility and unboundedness, double check.
- Estimate the potential size.

If IP problem large and no structure then it might be hard.
If TUM then solvable with very large size
If other structure, eg, packing, covering also solvable with large size

- Check the output of the solver and understand what is happening
- If all fails resort to heuristics

