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Multi-Objective Optimization: Basics
Multiobjective optimization problem with p objective functions to be minimized over a discrete,
nonempty, set X of feasible solutions:

min {f1(x), . . . , fp(x) | x ∈ X}

• x ∈ X a feasible solution, y = [f1(x), . . . , fp(x)] a feasible point (image)
• Y = f (X ) ⊆ Rp set of images of all feasible solutions in objective space.

Assume Y is bounded. We can rewrite:

min {(y1 . . . , yp) | y ∈ Y }

• Given a point y ∈ Rp, y−k is its orthogonal projection on the subspace Rp−1 i.e.

y−k = (y1, . . . , yk−1, yk+1, . . . , yp)

4



Multi-Objective Optimization: Basics

• Objective vector f = (f1, . . . , fp)

• We want to minimize f but what does it mean?
• Scalarization (eg, Weighted sum)
• Lexicographic
• Pareto optimality (without previous knwoledge on component importance)
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Basic Notions
Partial orders on Rp: let u and v be vectors in Rp:

weak component-wise order u � v ui ≤ vi , i = 1, . . . , p;
component-wise order u ⪯ v ui ≤ vi , i = 1, . . . , p and u , v ;
strict component-wise order u ≺ v ui < vi , i = 1, . . . , p

Let x and x ′ be two feasible solutions and y = f (x) and y ′ = f (x ′):
y weakly dominates y ′ iff y � y ′

y (Pareto) dominates y ′ iff y ⪯ y ′

y strictly dominates y ′ iff y ≺ y ′

• f (x) and f (x ′) are non-weakly dominated if f (x) 9 f (x ′) and f (x ′) 9 f (x)
• f (x) and f (x ′) are non-dominated if f (x) ⪯̸ f (x ′) and f (x ′) ⪯̸ f (x)

• A solution x is called efficient (or Pareto global optimum solution) iff its image is not
dominated: there is no x ′ ∈ X such that f (x ′) ⪯ f (x)

• A solution x is called weakly efficient iff its image is not strictly dominated.
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Basic Notions

• A set of solutions S is a Pareto global optimum set iff it contains only and all Pareto global
optimum solutions.

• Efficient set (or Pareto frontier) is the image of the Pareto global optimum set in the objective
space.

• X∗ ⊆ X is strict Pareto global optimum set iff:
• it contains only Pareto global optimum solutions
• the corresponding set of objective function value vectors coincides with the efficient set and its

elements are unique.
Let YND ⊆ Y be the set of points that are non-dominated (ie, the efficient set). We want an
algorithm to generate YND and provide one of the corresponding efficient solutions for each point
of this set.
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Example – Multi-objective TSP

Pareto global optimum set:

π f (π)
π = [u, v , w , x , y ] [5, 10]
π = [u, w , v , x , y ] [8, 8]
π = [u, v , w , x , y ] [10, 7]

strict Pareto global optimum set

if all edges had weights, eg, (3, 3), then all
(5

2
)

solutions would have cost [5 · 3, 5 · 3] and would
be in the Pareto global optimum set. However,
both the efficient set and the strict Pareto global
optimum set would have one single solution,
which is any of the feasible ones.
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Basic Notions

Computational class #P: concerned with counting the number of solutions.

A counting problem belongs to #P if there is a polynomial nondeterministic algorithm such that for
any instance of the problem, it computes a number of yes-answers that is equal to the number of
distinct solutions of that instance.

Class #P-complete: a problem P1 is #P-complete if it belongs to #P and for all problems P2 in
#P there exists a polynomial transformation from P1 to P2 such that any instance of P1 is
mapped into an instance of P2 with the same number of yes-answers as the instance of P1.
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Pareto Optimal Solutions

How do we find the set of Pareto Optimal solutions?

• evolutionary algorithms

• scalarization method

• enumeration (branch and bound and dynamic programming) [Przybylski A, Gandibleux X (2017)]

• ϵ-constraint method
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Basic Notions
Given two arbitrary sets of objective function value vectors in a Q-dimensional objective space,
A = {a1, . . . am} and B = {b1, . . . bn}

strictly dominates dominates better than

weakly dominates incomparable

11



• z(y) the set of points strictly dominating y
d(y) the set of points dominated by y :

z(y) = {y ′ ∈ Rp, y ′ ≺ y}
d(y) = {y ′ ∈ Rp, y � y ′}

• Let y I be the ideal point of Y , defined by y I = miny I ∈Y {y},

• y I provides a lower bound on each criterion and can be obtained by solving p programs
minimizing each of the p criteria.

• M an upper bound on each criterion, determined by using p max problems over the feasible set.
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constraints yi < ui cannot be written in a linear
program because they involve strict inequalities.
We use yi ≤ ui − ϵi instead, with ϵi smaller than
the smallest difference between the performance
of two different points on criterion i .
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Search region that corresponds to the
part of the objective space that may
contain nondominated points that have
not been generated so far.
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Generic algorithms iteratively

• explore the search region, or a superset of this region, using the integer program described in
Proposition 1;

• then they update it by removing the part dominated by the optimal solution when it exists or
by removing the part that is explored when no feasible solution exists.

These two steps are repeated until the search region does not contain feasible points anymore.
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Klamroth et al. (2015) describe the search region using p-dimensional subregions called search
zones, each zone being described using local upper bounds on each objective.

S(N) = ⋒u∈U(N)z(u)

where U(N) denotes the set of the upper bounds delimiting the search region induced by N
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Defining Points

Proposition 2. Bound u belongs to U(N) if and only if, for any of its bounded component uk , M,
there exists y ∈ N such that yk = uk and y−k ≺ u−k .

Let u ∈ U(N). Points y ∈ N satisfying Proposition 2 on a given objective k such that

yk = uk ,
y−k ≺ u−k

are referred to as the kth defining points of bound u.
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