DM872

Math Optimization at Work

Dantzig-Wolfe Decomposition and Delayed Column Generation

Marco Chiarandini
Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Solving the Linear Master Problem
2. Solving the Master Problem: Branch and Price

Outline

1. Solving the Linear Master Problem
2. Solving the Master Problem: Branch and Price

Solving the Linear Master Problem

Integer Programming Problem with block structure:

$$
\begin{gathered}
z_{M P}=\max \quad c^{1} \sum_{t=1}^{T_{1}} \lambda_{1, t} x^{1, t}+\quad c^{2} \sum_{t=1}^{T_{2}} \lambda_{2, t} x^{2, t}+\ldots+c^{K} \sum_{t=1}^{T_{K}} \lambda_{K, t} x^{K, t} \\
A^{1}\left(\sum_{t=1}^{T_{1}} \lambda_{1, t} x^{1, t}\right)+A^{2}\left(\sum_{t=1}^{T_{2}} \lambda_{2, t} x^{2, t}\right)+\ldots+A^{K}\left(\sum_{t=1}^{T_{K}} \lambda_{K, t} x^{K, t}\right)=b \\
\sum_{t=1}^{T_{k}} \lambda_{k, t}=1 \quad k=1, \ldots, K \\
\lambda_{k, t} \in\{0,1\} \quad t \in T_{k}, k=1, \ldots, K
\end{gathered}
$$

Let's consider the case $K=1$

$$
\begin{array}{cc}
z_{M P}=\max \sum_{t=1}^{T}\left(c x^{t}\right) \lambda_{t} & z_{L M P}=\max \sum_{t=1}^{T}\left(c x^{t}\right) \lambda_{t} \\
\sum_{t=1}^{T}\left(A x^{t}\right) \lambda_{t}=b & \sum_{t=1}^{T}\left(A x^{t}\right) \lambda_{t}=b \\
\sum_{t=1}^{T} \lambda_{t}=1 & \sum_{t=1}^{T} \lambda_{t}=1 \\
\lambda_{t} \in\{0,1\} & t \in T
\end{array} \lambda_{t} \geq 0 \quad t \in T
$$

Restricted LMP and Dual

$$
\begin{aligned}
& z_{L M P}=\max \sum_{t=1}^{T}\left(c x^{t}\right) \lambda_{t} \\
& \sum_{t=1}^{T}\left(A x^{t}\right) \lambda_{t}=b \\
& \sum_{t=1}^{T} \lambda_{t}=1 \\
& \lambda_{t} \geq 0 \quad t \in T
\end{aligned}
$$

$$
\begin{aligned}
z_{D L M P}=\min & \pi b+\pi_{0} \\
& \pi A^{T} x^{t}+\pi_{0} \geq c x^{t}, t=1, \ldots, T \\
& \pi \in \mathbb{R}^{m} \\
& \pi_{0} \in \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& z_{R L M P}=\max \sum_{t=1}^{p}\left(c x^{t}\right) \lambda_{t} \\
& \sum_{t=1}^{p}\left(A x^{t}\right) \lambda_{t}=b \\
& \sum_{t=1}^{p} \lambda_{t}=1 \\
& \lambda_{t} \geq 0 \quad t=1, \ldots, p
\end{aligned}
$$

$$
\begin{aligned}
z_{\text {DRLMP }}=\min & \pi b+\pi_{0} \\
& \pi A^{T} x^{t}+\pi_{0} \geq c x^{t}, t=1, \ldots, p \\
& \pi \in \mathbb{R}^{m} \\
& \pi_{0} \in \mathbb{R}
\end{aligned}
$$

Column Generation Process and Dual Bound

- $z_{L M P} \geq z_{M P}$ because linear relaxation
- $z_{L M P} \geq z_{R L M P}$ because of simplex theory (some columns missing)
- subproblem (pricing or constraint violation) $\xi^{p}=\max \left\{c x^{t}-\pi A^{T} x^{t}-\pi_{0} \mid x^{t} \in X\right\}$. Solution: $\left(x^{*},\left(\pi^{*}, \pi_{0}^{*}\right)\right)$
- $z_{M P} \leq z_{L M P} \leq z_{R L M P}+\xi^{p}$ hence, valid dual bound on $z_{M P}$
- if $\xi^{p}=0$ then $z_{L M P}=z_{R L M P}$ and stop column generation process
- if $\xi^{p}>0$ then
stop if $\pi^{*}\left(A x^{*}-b\right)=0$
else add column $\left(c x^{*}, A x^{*}, 1\right)$

Outline

1. Solving the Linear Master Problem

2. Solving the Master Problem: Branch and Price

Branching constraints

- branch on original variables or on column variables
- disadvantages of branching on column variables: $B \& B$ tree unbalanced and subproblem difficult to solve

Solving the LP master at a node
The constraints introduced for branching (and other cutting planes) change the master problem or the subproblem. Where they should be considered is a design choice.

