
DM872

Mathematical Optimization at Work

TSP practice

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationOutline

1. Dynamic Programming

2. MILP Formulations

3. Solving the DFJ Formulation

2

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationTraveling Salesman Problem

https://www.math.uwaterloo.ca/tsp/

3

https://www.math.uwaterloo.ca/tsp/

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationOutline

1. Dynamic Programming

2. MILP Formulations

3. Solving the DFJ Formulation

4

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationDynamic Programming

• Dynamic Programming (DP) is a technique to solve combinatorial optimization problems with
applications, for example, in mathematical programming, optimal control, and economics

• DP is somehow related to branch-and-bound as it performs an intelligent enumeration of the
feasible solutions of the problem considered

• Principle of Optimality (known as Bellman Optimality Conditions): Suppose that the solution
of a problem is the result of a sequence of n decisions D1,D2, ...,Dn; if a given sequence is
optimal, then the first k decisions must be optimal, but also the last n − k decisions must be
optimal

• DP breaks down the problem into stages, at which decisions take place, and find a recurrence
relation that relates each stage with the previous one

5

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationPrinciple of Optimality

The TSP asks for the shortest tour that starts from 0, visits all cities of the set C = {1, 2, ..., n}
exactly once, and returns to 0, where the cost to travel from i to j is cij (with (i , j) ∈ A)
If the optimal solution of a TSP with six cities is (0, 1, 3, 2, 4, 6, 5, 0), then...

• the optimal solution to visit {1, 2, 3, 4, 5, 6} starting from 0 and ending at 5 is (0, 1, 3, 2, 4, 6, 5)
• the optimal solution to visit {1, 2, 3, 4, 6} starting from 0 and ending at 6 is (0, 1, 3, 2, 4, 6)
• the optimal solution to visit {1, 2, 3, 4} starting from 0 and ending at 4 is (0, 1, 3, 2, 4)
• the optimal solution to visit {1, 2, 3} starting from 0 and ending at 2 is (0, 1, 3, 2)
• the optimal solution to visit {1, 3} starting from 0 and ending at 3 is (0, 1, 3)
• the optimal solution to visit 1 starting from 0 is (0, 1)

 The optimal solution is made up of a number of optimal solutions of smaller subproblems

6

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationEnumerate All Solutions of the TSP

• A solution of a TSP with n cities derives from a sequence of n decisions, where the kth
decision consists of choosing the kth city to visit in the tour

• The number of nodes (or states) grows exponentially with n
• At stage k , the number of states is

(
n
k

)
k!

• With n = 6, at stage k = 6, 720 states are necessary
 DP finds the optimal solution by implicitly enumerating all states but actually generating only
some of them

7

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationAre All States Necessary?

If path (0, 1, 2, 3) costs less than (0, 2, 1, 3), the optimal solution cannot be found in the blue part
of the tree

8

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationAre All States Necessary?

If path (0, 1, 2, 3, 4, 5) costs less than (0, 1, 2, 4, 3, 5), the optimal solution cannot be found in the
blue part of the tree

9

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationAre All States Necessary?

• At stage k (1 ≤ k ≤ n), for each subset of cities S ⊆ C of cardinality k , it is necessary to have
only k states (one for each of the cities of the set S)

• At state k = 3, given the subset of cities S = {1, 2, 3}, three states are needed:
• the shortest-path to visit S by starting from 0 and ending at 1
• the shortest-path to visit S by starting from 0 and ending at 2
• the shortest-path to visit S by starting from 0 and ending at 3

• At stage k ,
(
n
k

)
k states are required to compute the optimal solution (not

(
n
k

)
k!)

#States n = 6
Stage

(
n
k

)
k!

(
n
k

)
k

1 6 6
2 30 30
3 120 60
4 360 60
5 720 30
6 720 6

10

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationComplete Trees with n=4

11

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationDynamic Programming Recursion for the TSP I

• Given a subset S ⊆ C of cities and k ∈ S , let f (S , k) be the optimal cost of starting from 0,
visiting all cities in S , and ending at k

• Begin by finding f (S , k) for |S | = 1, which is f ({k}, k) = c0k ,∀k ∈ C

• To compute f (S , k) for |S | > 1, the best way to visit all cities of S by starting from 0 and
ending at k is to consider all j ∈ S \ {k} immediately before k , and look up f (S \ {k}, j),
namely

f (S , k) = min
j∈S\{k}

{f (S \ {k}, j) + cjk}

• The optimal solution cost z∗ of the TSP is z∗ = mink∈C{f (C , k) + ck0}
12

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationDynamic Programming Recursion for the TSP II

DP Recursion from [Held and Karp (1962)]

1. Initialization. Set f ({k}, k) = c0k for each k ∈ C

2. RecursiveStep. For each stage r = 2, 3, ..., n, compute

f (S , k) = min
j∈S\{k}

{f (S \ {k}, j) + cjk}∀S ⊆ C : |S | = r and ∀k ∈ S

3. Optimal Solution. Find the optimal solution cost z∗ as

z∗ = min
k∈C
{f (C , k) + ck0}

• With the DP recursion, TSP instances with up to 25 - 30 customers can be solved to
optimality; other solution techniques (i.e., branch-and-cut) are able to solve TSP instances
with up to... 85900 customers

• Nonetheless, DP recursions represents the state-of-the-art solution techniques to solve a wide
variety of PDPs

13

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationOutline

1. Dynamic Programming

2. MILP Formulations

3. Solving the DFJ Formulation

14

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationDantzig, Fulkerson and Johnson (DFJ) Formulation

• Find the cheapest movement for a drilling, welding, drawing, soldering arm as, for example, in
a printed circuit board manufacturing process or car manufacturing process

• n locations, asymmetric cij cost of travel,
Variables:

xij ∈ {0, 1} ∀i , j ∈ V , i 6= j

Objective:

n∑
i=1

n∑
j=1

cijxij

15

Dynamic Programming
MILP Formulations
Solving the DFJ Formulation

Constraints:

• visit all vertices∑
j :j 6=i

xij = 1 ∀i = 1, . . . , n

∑
i :i 6=j

xij = 1 ∀j = 1, . . . , n

• cut set constraints∑
i∈S

∑
j 6∈S

xij ≥ 1 ∀S ⊂ N,S 6= ∅

• subtour elimination constraints∑
i∈S

∑
j∈S

xij ≤ |S | − 1 ∀S ⊂ N, 2 ≤ |S | ≤ n − 1

16

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationMiller, Tucker, Zemling (MTZ) Formulation

min
∑
(ij)∈A

cijxij (1)

∑
i :i 6=j

xij = 1 ∀j = 1, . . . , n (2)

∑
j :i 6=j

xij = 1 ∀i = 1, . . . , n (3)

ui − uj + nxij ≤ n − 1, ∀i , j = 2, 3, . . . , n, i 6= j (4)
xij ∈ B ∀ij ∈ A (5)
ui ∈ R ∀i = 1, . . . , n (6)

17

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationGavish-Graves (GG) Formulation

Single commodity flow. gij ∈ R+ sequence variables (is 0 if xij = 0 otherwise it indicates the
number of arcs included on the path from vertex 1 up to arc (i , j))

min
∑
(ij)∈A

cijxij (7)

∑
i :i 6=j

xij = 1 ∀j = 1, . . . , n (8)

∑
j :i 6=j

xij = 1 ∀i = 1, . . . , n (9)

n∑
j=1

gji −
n∑

j=2

gij = 1 ∀i = 2..n (10)

gij ≤ (n − 1)xij ∀ij ∈ A (11)
xij ∈ B ∀ij ∈ A (12)
gij ∈ R+ ∀ij ∈ A (13)

18

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationSvestka (S) Formulation

• similar to precedent, also a single commodity flow formulation
• yij : flow from city i to city j
• f : gain in flow from city i to city j

min
∑
ij∈A

cijxij (14)

∑
j :ji∈A

yji ≥ 1 ∀i = 2, . . . , n (15)

∑
j :ij∈A

yij −
∑
j :ji∈A

yji = f ∀i = 1, . . . , n (16)

∑
ij∈A

xij ≤ n (17)

yij ≤ (1+ n f)xij ∀ij ∈ A (18)
xij ∈ B ∀ij ∈ A (19)
yij ∈ R+ ∀ij ∈ A (20)

19

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationDantzig (D) Formulation

• Indices: i , jk for cities, t for step
• xijt = 1 if we drive from city i to city j at step t, else 0.

min
∑
ij∈A

∑
t

cijxijt (21)

∑
i

xijt −
∑
k

xj,k,t+1 = 0 ∀j and t = 1, . . . , n (22)∑
j

∑
t

xijt = 1 ∀i = 1, . . . , n (23)

xijt ∈ B ∀ij ∈ A, t (24)

20

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationComparison

Dual bounds

Instance DFJ MTZ Svestka Dantzig
ran20points 3182.2 2538.8 1087.7 2504.1
dantzig42.dat 2538.8 1032.8 2504.2
berlin52.dat
bier127.dat

21

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationSymmetric DFJ

• E = {i , j | i ∈ V , j ∈ V , i < j}

(TSPIP) min
∑

cijxij

s.t.
∑

ij∈δ(i)

xij +
∑

ji∈δ(i)

xji = 2 for all i ∈ V

∑
ij∈E(S)

xij ≤ |S | − 1 for all ∅ ⊂ S ⊂ V , 2 ≤ |S | ≤ n − 1

xij ∈ {0, 1} for all ij ∈ E

23

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationOutline

1. Dynamic Programming

2. MILP Formulations

3. Solving the DFJ Formulation

24

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationLazy Constraint Approach to DFJ

• relax the set of sub-tour
elimination constraints

• S = {∅ ⊂ S ⊂ V }
• S ′ ⊂ S

(RTSPIP) min
∑

cijxij

s.t.
∑

ij∈δ(i)

xij +
∑

ji∈δ(i)

xji = 2 for all i ∈ V

∑
ij∈E(S)

xij ≤ |S | − 1 for all S ∈ S ′

xij ∈ {0, 1} for all ij ∈ E

• relax the integrality
constraint

(RTSPLP) min
∑

cijxij

s.t.
∑

ij∈δ(i)

xij +
∑

ji∈δ(i)

xji = 2 for all i ∈ V

∑
ij∈E(S)

xij ≤ |S | − 1 for all S ∈ S ′

xij ∈ R+ for all ij ∈ E

25

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationImplementation V1

set S ′ = ∅
1. x∗ ←− Solve RTSPIP(S ′)
2. µk ,S ←− Solve SEP(x∗)

if µk < 2 then set S ′ = S ′ ∪ S and go to 1
else return optimal solution x∗

SEP: connected components or number of cycles

In gurobi and cplex implementation via Lazy constraints (Model.cbLazy) and call back function called
when MIPSOL. See script: tsp_gurobi_lazy

26

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationImplementation V2

set S = ∅
1. x∗ ←− Solve RLP(S ′)
2. µk ,S ←− Solve SEPLP(x∗)

if µk < 2 then set S ′ = S ′ ∪ S and go to 1
else go to 3

3. branch and bound and repeat 1. and 2. at every node.

SEPLP: LP formulation or Max Flow

In gurobi and cplex implementation via Lazy constraints (Model.cbLazy) and call back functions when
LP solution at node.

27

Dynamic Programming
MILP Formulations
Solving the DFJ Formulation

• Is the Asymmetric formulation TUM when all sub-tour elimination constraints are removed?

• Is the Symmetric formulation TUM when all sub-tour elimination constraints are removed?

• Does the DFJ formulation describe the convex hull of the problem?

28

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationTraveling Salesman Problem

29

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationTraveling Salesman Problem

29

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationTraveling Salesman Problem

29

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationTraveling Salesman Problem

29

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationTraveling Salesman Problem

29

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationTraveling Salesman Problem

29

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationTraveling Salesman Problem

29

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationAn Improved DFJ Formulation. (why?)

minimize cT x subject to

0 ≤ xe ≤ 1 for all edges e,∑
(xe : v is an end of e) = 2 for all cities v ,∑

(xe : e has one end in S and one end not in S) ≥ 2
for all nonempty proper subsets S of cities,∑i=3

i=0(
∑

(xe : e has one end in Si and one end not in Si) ≥ 10,
for any comb

30

Dynamic Programming
MILP Formulations
Solving the DFJ FormulationComb inequalities

A comb can be defined by a handle H and a number of teeth T1,T2, . . . ,Ts such that:

• H,T1,T2, . . . ,Ts ⊆ V

• Tj \ H 6= ∅ ∀1 ≤ j ≤ s

• Tj ∩ H 6= ∅ ∀1 ≤ j ≤ s

• Ti ∩ Tj = ∅ ∀i < j ≤ s

• s ≥ 3 and odd

A comb inequality states that (in the two versions, of which only one is needed):

x(δ(H)) +
s∑

j=1

x(δ(Tj)) ≥ 3s + 1 cut set constraints

x(E (H)) +
s∑

j=1

x(E (Tj)) ≤ |H|+
s∑

j=1

|Tj | −
3s + 1

2
subtour elimination constraints

Comb inequalities are valid inequalities for the TSP.
31

24,978 Cities

solved by LK-heuristic and prooved
optimal by branch and cut

10 months of computation on a cluster
of 96 dual processor Intel Xeon 2.8
GHz workstations

http://www.tsp.gatech.edu

http://www.tsp.gatech.edu

24,978 Cities

solved by LK-heuristic and prooved
optimal by branch and cut

10 months of computation on a cluster
of 96 dual processor Intel Xeon 2.8
GHz workstations

http://www.tsp.gatech.edu

http://www.tsp.gatech.edu

	Dynamic Programming
	MILP Formulations
	Solving the DFJ Formulation

